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In this paper | shall give a brief survey of some work that has been done on
equivariant general topology, as far as it is related with my own research. Thus,
equivariant algebraic topology will not be considered, nor actions of Lie groups
on manifolds and their classification. | will restrict myselt to sketching some
general problems; references to (partial) solutions will be given, but only very
few of them will be discussed explicitly.

. THE CATEGORY OF G-SPACES

Let G be an arbitrary topological group, fixed during the discussion. A fopo-
logical transformation group (ttg) with acting group G, or more shortly, a G-
space, is a pair (X, 7) where X 1s a topological space and 7: (1, x) — 7' x:
G X X—X 1s a continuous mapping such that 7 =idy (e 1s the unit element of
G) and 7 =7'cq' for all s, teG. In particular, f —» 7 1S a (not necessarily
injective) homeomorphism of the group G into the homeomorphism group of
X.

If (X,7n) and (Y,o) are G-spaces, then a mapping f: X—Y 1s called
equivariant whenever fow =g'cf for every reG. A continuous equivariant
mapping will also be called a morphism of G-spaces. Consider the collection of
all topological spaces and continuous m Gppings as a category, denoted by Top.
If K is a subcategory of Top, then K¥ will denote the category having as
objects all G-spaces (X, 7) with X an object in K and as morphisms all mor-
phisms in K which are equivariant. The study of Top“ (and more general
categones of G-spaces) was initiated 1n DE VRIES [31]. Basic 1s the observation
that Top® can be seen as the category of algebras over a suitable comonad in
Top. If G 1s locally compact, then Top can also be seen as the category of
co-algebras over a suitable monad in Top. This allows for a quite complete
description of the category Top" in terms of the category Top, the latter
category being considered as known. For a survey of this theory, see also DE
VRIES [32].

Since then a number of topological problems in the category Top” has been
studied by various authors, see DE VRIES [35,36] or ANTONYAN & SMIRNOV [9]
and SMIRNOV [26] for surveys and further references. In these papers, general
topology 1s regarded as a theory about Top" with G the trivial group {e}, and
results 1n this theory are generalised to the case of more general groups.
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Sometimes, results are easily obtained by using the various functors between

Top® and Top studied in DE VRIES [31] and their preservation properties. For

example, the results in KaADIROV [14] about projective objects for certain

classes of epimorphisms in Top® and about projective hulls of G-spaces are not
very surprising from this point of view. Interesting problems arise when those
functors do nor preserve or reflect the properties or constructions one is
interested in. Generally speaking, there are the followinﬁg three obstructions to

a straightforward translation of results from Top to Top":

(a) All mappings employed or to be constructed have to be equivariant. For
example, 1f (X, 7) and (Y, o) are G-spaces, X metrizable and Y a com-
pact convex subset of a locally convex topological vector space, 4 a closed
Invaniant subset of X, and f: 4—7Y is a continuous equivariant mapping
then f has a continuous extension f: X—Y. But is there also an equivari-
ant continuous extension? This would yield an equivariant version of
Dugundji’s extension theorem (or: a Dugundji’s theorem for G-spaces).
See Section 2 below.

(b) “Categorically’ constructed objects do not always belong to the desired
subcategories of Top®. For example (related to the problem mentioned in
(a) above), if K 1s an absolute extensor (injective object) in Top for a cer-
tain class of monomorphisms, then (C.(G, K), p) (with p'f (s)=f(st) for
s, teG and fe€C(C.(G, K)) 1s an equivariant extensor (injective object) for
the corresponding class of monomorphisms in Top® — this follows from
categorical considerations — but C.(G, K) is never compact if G is not
finite!

(c) All spaces employed or constructed have to be G-spaces. As to the ques-
tion of which G-space should replace the interval [0;1] (which is a very
important object in Top) and which mappings should play the role of con-
tinuous real valued functions see DE VRIES [39]. Another problem of this
type: every Tychonov space X can be embedded in a compact Hausdorff
space (€.g. in the Stone-Ceck compactification BX of X); if (X, 7) is a G-
space with X Tychonov, does there exist a G-space (X, 7) with X compact
Hausdorfl space in which X can be equivariantly embedded? (In general,
7 cannot be extended to a continuous (!) action of G on BX: see DE VRIES
[36].) Simular questions can be asked with respect to completions. For

compactifications, see Section 4, below; other problems of this type are
considered in Section 3.

2. EQUIVARIANT EXTENSION OF MAPPINGS

Let me first mention the following result which is a version of a (by now) clas-
sical theorem from GLEASON [12] (see also PALAIS [24]):

THEOREM. Let G be a compact topological group and let (K, a) be a G-space
with K a metrizable compact convex subset of a locally convex topological vector

space such that each o' : K—K is an affine mapping. Let (X, w) be a G-space
and A a closed invariant subset such that every continuous function from A into

[0;1] has a continuous extension over all of X. Then every morphism of G-spaces
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[: (A, m)—(K,a) has an extension to a morphism of G-spaces
[ X, m)—(K, a).

REMARK. If X 1s metrizable, then the result also holds if K 1s not metrizable.
[n this case K need not even be compact: completeness 1s sufficient as was

observed in ANTONYAN [4]. Vanations of this result are surveyed in Section 2
of ANTONYAN [7]; also references to ANTONYAN [8], MADIRIMOV [15] and
VMURAYAMA [23] could be added. The results mentioned there are all for the
case of a compact, or even finite, group G. For non-compact groups results are

much more difficult to obtain. Let me mention the following (see DE VRIES

[41])3

HEOREM. Let (X, m) be a G-space with X a compact Hausdor[f space, and let

A be a closed invariant subset of X. The following conditions are equivalent:

(1) For every equicontinuous G-space (K, a) with K and o as in the preceding
theorem and for every morphism of G-spaces [ : (A, m)—<{K, a) there is an
extension to a morphism of G-spaces [: (X, m)—(K, o).

(1) Every almost periodic function h: A—R, can be extended to an almost
periodic function h: X—-R.

(N.B. A G-space (K, a) 1s said to be equicontinuous whenever (a':1€G} is an
equicontinuous family of self-maps of K with respect to the unique uniformity
of K. If (Y, o) 1s a G-space then a continuous function g: Y—R 1s called
almost periodic whenever g 18 bounded and the set {goo': reG} 1s totally
bounded with respect to the supremum norm.) The disadvantage of this result
1s that 1t characterizes pairs (4, (X, 7)) (with 4 a closed invanant subset of the
G-space (X, 7)) for which any G-spaces (K, a) as indicated 1n part (1) of the
theorem 1S a G-extensor in terms of an extension property of certain (real-
valued) functions. There 1s yet another characterization, not using extension of
functions; it uses terminology from topological dynamics, too complicated to
explain here.

An amusing consequence of this theorem 1s the following proof that (X, a)
as above has an invarnant pomnt: embed (K, a) equivanantly mn (K", a" ),
where K™ 1s K to which one 1solated invanant point 1s added; condition (i1) 1s
trivially fulfilled, hence (1) implies that (K, a) 1s an equivanant retract of
(K", a"). The image in K of the invariant point of K* 1s invariant in K. (It 1s
well-known that (K, a) as above has an invariant point even if K 1s not
metrizable.)

Let me close this section by the observation that knowledge of G-extensors
(which are absolute G-retracts!) i1s useful for the development of equivariant
shape theory; cf. SMIRNOV [27,28] and a forthcoming paper by Antonyan and
MardesiC. Up to now, the only satisfactory results in this area are for the case
of a compact group.

31



3. LINEARIZATION
[t 15 easy to show that if G 1s locally compact, then every Tychonov G-space
(X, ) can be equivariantly embedded in a linear G-space, 1.e. in a G-space
(V,o) with V' a locally convex topological vector space such that each
o': V=V is linear. See e.g. DE VRIES [31] or SMIRNOV [25] (but at that
moment this fact was already folklore). Problem: 1if X belongs to a certain spe-
cial class of spaces, can V also be chosen from some related special class? For
example, if X 1s metrizable, can V' be chosen to be a Hilbert space? (Answer:
yes, provided G 1s also o-compact; cf. DE VRIES [31], which generalizes earlier
work of Baayen and de Groot). Or: if X 1s a finite dimensional separable
metric space, can V' be chosen to be a Euclidean space? (Answer: if G is a
compact Lie group and if (X, 7) has only finitely many orbit types, then the
answer 1s yes; cf. Mostov [22], and for later refinements, ALLAN [2] and the
references given there.) For a survey of many linearization results, cf. DE
VRIES [35], to which might be added JAworOowsK1I [13], MCCANN [16] (and for
semiflows: MCCANN [17]), M.G. MEGRELISHVILI [21] and the references given
there.

The following result generalizes (slightly) the main theorem of ANTONYAN
[5] and results from DE VRIES [35]. It 1s based on the compactification theorem
from Section 4 below and on some basic results from infinite dimensional

topology:

THEOREM (ANTONYAN & DE VRIES [10]). Let G be locally compact and o-

compact. Then for every cardinal number 1=w(G) there exists an action 7 of G

on R" such thar.

(1) the cube [0;1]" is an invariant subset of R,

(1) every G-space (X, w) with X a Tychonov space of weight w(X)<t can be
equivariantly embedded in [0;1]".

Moreover, there exists a linear structure on R" such that R™ is a locally convex

topological vector space and t

(ii1) the action 7 is linear (i.e. each m is linear);

(1v) [O;1]" is a convex subset of R”.

4. COMPACTIFICATION
From general categorical considerations it follows easily that Comp® is a

reflective subcategory of Top”. For a G-space (X,w) let its reflection in
Comp® be denoted by

bg: (X, m) — (BsX, 7).

Question: if X is a Tychonov space, is ¢; an equivariant dense embedding?
Answer: yes, provided G 1s locally compact. This is an immediate consequence
of the following

THEOREM. Let G be locally compact and let {X,n) be a G-space with X a
Tychonov space. Then (X, ) can be equivariantly embedded in a G-space {Y, o)
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with Y a compact space of weight w(Y)<< max{i(G/Gy), w(X)}. (Here

Go:={teG: 7" =idy} and AG/Gy) is the Lindelof degree of G/G.)

REMARKS. For two different proofs, cf. DE VRIES [33,34]; a third proof for the
case that G is compact was obtained independently in ANTONYAN [6]; see also
ANTONYAN [3]. Yet another proof was obtained by M.G. Megrelishvili: every
G-space admitting a G-linearization has a G-compactification; see M.G.
MEGRELISHVILI [20,21]. For the 1nequahty concerning the weight of a posmble
equivariant compactification, cf. DE VRIES [36]. Observe that for the existence
of an equivariant embedding i a compact G-space, local compactness of G 1s
not strictly needed: 1t 1s sufficient that there exists a uniformity i X with
respect to which some neighbourhood of e in G acts equicontinuously; cf. DE
VRIES [37] and also MEGRELISHVILI [19]. An example in ANTONYAN & SMIR-
NOV [9] shows, however, that some additional condition 1s needed; see also
M.G. MEGRELISHVILI |[21].

The equwanam embedding ¢¢: (X, 7)—>{(Bs X, 7> (1t will be assumed that G
is locally compact and all G-spaces are Tychonov) plays the role of the Stone-
Ceck compactification from Top. Explicit examples are contained in SMIRNOV
& SToYANOV [29] and StoyaNov [30]. In DE VRIES [38], an equivariant version
of Glicksberg’s theorem was obtained. Using results from DE VRIES [39], this
theorem can now be formulated as follows: provided a certain ‘non-triviality’
condition is fulfilled one has Bs(I1,X,)=11,85X, U and only if 11, X, 15

pseudocompact (for the ‘only if’ part, G must also be assumed to be locally
connected). See DE VRIES [40].

5. OTHER RESULTS

Interesting results concerning among other things dimension theory have been
obtained by Smurnov and his co-workers. See SMIRNOV [26], AGEEV [l],
BALADZE [11] and MEGRELISHVILI [18]. For equivariant completions, see
MEGRELISHVILI [19, 20].
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